Physics, asked by anji36, 3 months ago

If a² + b + c2=1 then the range of ab+bc+ca
is
1)[1, 0) 2)[71,-] 3)( - 4.4) 4)[7]​

Answers

Answered by shadowsabers03
4

Given,

\longrightarrow a^2+b^2+c^2=1

We need to find the range of ab+bc+ca.

Since x^2\geq0 for every real number x, we see that,

\longrightarrow (a+b+c)^2\geq0

\longrightarrow a^2+b^2+c^2+2(ab+bc+ca)\geq0

\longrightarrow 1+2(ab+bc+ca)\geq0

\longrightarrow ab+bc+ca\geq-\dfrac{1}{2}\quad\quad\dots(1)

Also it is true that,

\longrightarrow(a-b)^2+(b-c)^2+(c-a)^2\geq0

[the sum of two or more non - negative real numbers is always non - negative.]

\longrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\geq0

\longrightarrow a^2+b^2+c^2-ab-bc-ca\geq0

\longrightarrow1-ab-bc-ca\geq0

\longrightarrow ab+bc+ca\leq1\quad\quad\dots(2)

Combining (1) and (2),

\longrightarrow-\dfrac{1}{2}\leq ab+bc+ca\leq1

Hence,

\longrightarrow\underline{\underline{ab+bc+ca\in\left[-\dfrac{1}{2},\ 1\right]}}

Similar questions