Math, asked by utkarsh2011094, 8 months ago

if a2 + b2 = 74 and ab= 35 then find a+b​

Answers

Answered by venkateshwarlu201
1

Step-by-step explanation:

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

(a + b) =    \sqrt{ {a}^{2 }  +  {b}^{2}  + 2ab}

a+b=

(a + b) =  \sqrt{74 + 2(35)}

a+b=√144

a+b=+12

Answered by llSecreTStarll
3

Solution :

  • a² + b² = 74
  • ab = 35
  • a + b = ❓

we know that

 \boldsymbol \green{ {a}^{2} +  {b}^{2}   + 2ab = (a + b {)}^{2} }

 \boldsymbol{›› \: a + b =  \sqrt{ {a}^{2} +  {b}^{2} + 2ab  } } \: ....(1)

  • Substituting values of a² + b² , ab in (1)

\boldsymbol{›› \: a + b =   \sqrt{74 + 2 \times 35} } \\  \\ \boldsymbol{›› \:a + b =  \sqrt{74 + 70}  } \\  \\ \boldsymbol{›› \: a + b =  \sqrt{144} } \\  \\ \boldsymbol{›› \:a + b = \pm12 }

━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Done࿐

Similar questions