If a²+b² =7ab prove.
2log (a+b) = log9 + log a + log b
Answers
Answered by
10
Solution :
Given :
a² + b² = 7ab
Adding 2ab on both sides
⇒ a² + b² + 2ab = 7ab + 2ab
⇒ (a + b)² = 9ab
[ Because (a + b)² = a² + b² + 2ab ]
Taking log on both sides
⇒ log (a + b)² = log 9ab
⇒ 2log (a + b) = log 9ab
[ Because log a^n = nlog a ]
⇒ 2log (a + b) = log9 + log a + log b
[ Because log a + log b = log ab ]
Hence proved.
Similar questions