Math, asked by chandrima884, 1 year ago

if a2+b2+c2=1 then the value of ab+bc+ca= ?


sonu668485: hiii

Answers

Answered by Anonymous
32
HELLO

===============================

Given that
a^2 + b^2 + c^2 = 1

 Therefore,
 1 + 2(ab + bc + ca) ≥ 0_________ { by (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)}

ab + bc + ca ≥ -1/2

(a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0
2 [ a^2 + b^2 + c^2 - ab - bc - ca ] ≥ 0
2 [ 1 - (ab + bc + ca)] ≥ 0
Therefore, 1 ≥ (ab + bc + ca)

so, ur answer is [-1/2, 1]

===============================

THANKS ☺️

chandrima884: thanks for help
Answered by Anonymous
23
HEY Buddy......!! here is ur answer

We know that....(a+b+c)²=a²+b²+c²+2(ab+bc+ca)

Here, (a+b+c)² will be 0 for any real value of a, b and c

=> a²+b²+c²+2(ab+bc+ca) = 0

=> 1+2(ab+bc+ca) = 0

[ given that a²+b²+c² = 1 ]

=> ab+bc+ca = –1/2

I hope it will be helpful for you....!!

THANK YOU ✌️✌️

MARK IT AS BRAINLIEST


sonu668485: its my pleasure
Anonymous: :)
sonu668485: good night
sonu668485: sweet dreams
Anonymous: Thanks sister
Anonymous: :)
chandrima884: thanks
Anonymous: most welcome ☺️ bro
Similar questions