if a2+b2+c2=1 then the value of ab+bc+ca= ?
sonu668485:
hiii
Answers
Answered by
32
HELLO
===============================
Given that
a^2 + b^2 + c^2 = 1
Therefore,
1 + 2(ab + bc + ca) ≥ 0_________ { by (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)}
ab + bc + ca ≥ -1/2
(a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0
2 [ a^2 + b^2 + c^2 - ab - bc - ca ] ≥ 0
2 [ 1 - (ab + bc + ca)] ≥ 0
Therefore, 1 ≥ (ab + bc + ca)
so, ur answer is [-1/2, 1]
===============================
THANKS ☺️
===============================
Given that
a^2 + b^2 + c^2 = 1
Therefore,
1 + 2(ab + bc + ca) ≥ 0_________ { by (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)}
ab + bc + ca ≥ -1/2
(a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0
2 [ a^2 + b^2 + c^2 - ab - bc - ca ] ≥ 0
2 [ 1 - (ab + bc + ca)] ≥ 0
Therefore, 1 ≥ (ab + bc + ca)
so, ur answer is [-1/2, 1]
===============================
THANKS ☺️
Answered by
23
HEY Buddy......!! here is ur answer
We know that....(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
Here, (a+b+c)² will be 0 for any real value of a, b and c
=> a²+b²+c²+2(ab+bc+ca) = 0
=> 1+2(ab+bc+ca) = 0
[ given that a²+b²+c² = 1 ]
=> ab+bc+ca = –1/2
I hope it will be helpful for you....!!
THANK YOU ✌️✌️
MARK IT AS BRAINLIEST
We know that....(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
Here, (a+b+c)² will be 0 for any real value of a, b and c
=> a²+b²+c²+2(ab+bc+ca) = 0
=> 1+2(ab+bc+ca) = 0
[ given that a²+b²+c² = 1 ]
=> ab+bc+ca = –1/2
I hope it will be helpful for you....!!
THANK YOU ✌️✌️
MARK IT AS BRAINLIEST
Similar questions