If a2 + b2 + c2 = 29 and ab + bc + ca = 26, then the value of a + b + c can be ______.
Answers
Answered by
0
Answer:
If a2 + b2 + c2 = 29 and ab + bc + ca = 26, then the value of a + b + c can be ___9___.
Step-by-step explanation:
Given (a + b + c) = 9 and (ab + bc + ca) = 26 (a + b + c)2 = 92 ⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81 ⇒ a2 + b2 + c2 + 2(26) = 81 ⇒ a2 + b2 + c2 + 52 = 81 ⇒ a2 + b2 + c2 = 81 − 52 = 29
Answered by
1
Answer:
9
Step-by-step explanation:
a2+b2+c2 = 29
ab+bc+ca = 26
a+b+c = ?
let us square the eq. a+b+c
= (a+b+c)^2
= a2+b2+c2+2ab+2bc+2ca
= a2+b2+c2+2(ab+bc+ca)
putting the values,....
=29+2(26)
=29+52
=81
(a+b+c)^2 = 81
= a+b+c = root(81)
a+b+c = 9
Similar questions