Math, asked by shahaastha4650, 10 months ago

if a²+b²+c²=50 and ab+bc+ca=46, find a+b+c

Answers

Answered by adi03042003
1

Step-by-step explanation:

We know that

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

Given,

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 50

Also, ab+bc+ca=46

So,

 {(a + b + c)}^{2}  = 50 + 2(46) = 142

So,

a + b + c =  \sqrt{142}

Thank you

Answered by umiko28
3

   \huge\red{\mathbb{ QUESTION}}

★ ★ a²+b²+c²=50 and ab+bc+ca=46, find a+b+c

 \huge\pink{ \mathbb{SOLUTION} \implies: }

 \huge \bf\ using \: formula \leadsto: \\  \\  \bf\   {(a + b + c)}^{2}  =  {a}^{2} +    {b}^{2}  +   {c}^{2}  + 2(ab + bc + ba)

 \sf\ {a}^{2} +  {b}^{2}  +  {c}^{2}  =50 \:  and \:  ab+bc+ca=46 \\  \\  \bf\  \implies:  {(a + b + c)}^{2} =50 +  2(46)  \\  \\ \bf\  \implies: {(a + b + c)}^{2} = 50 + 92 \\  \\ \bf\  \implies:{(a + b + c)}^{2} = 142 \\  \\  \bf\  \implies: a + b + c =  \sqrt{142}  \\  \\ \bf\  \implies:a + b + c = 11 \sqrt{21}

Similar questions