If a²+b²+c²=83 and a+b+c=15, then find the value of ab+bc+ca.
Answers
Answered by
0
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
(15)^2=83+2(ab+bc+ca)
225–83=2(ab+bc+ca)
142/2=71=ab+bc+ca
a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=(15)(83–71)
=15×12
=180 , Answer
(15)^2=83+2(ab+bc+ca)
225–83=2(ab+bc+ca)
142/2=71=ab+bc+ca
a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=(15)(83–71)
=15×12
=180 , Answer
Answered by
2
Given:
- a² + b² + c² = 83
- a + b + c = 15
To find out:
Find the value of ab + bc + ca ?
Solution:
We know that,
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
⇒ ( a + b + c )² = a² + b² + c² + 2 ( ab + bc + ca )
Putting the values in the above formula, we get
⇒ ( 15 )² = 83 + 2 ( ab + bc + ca )
⇒ 225 - 83 = 2 ( ab + bc + ca )
⇒ 2 ( ab + bc + ca ) = 142
⇒ ab + bc + ca = 142/2
⇒ ab + bc + ca = 71
Some useful identities:
- ( a - b )³ = a³ - b³ - 3ab ( a - b )
- a³ + b³ = ( a + b ) ( a² - ab + b² )
- a³ - b³ = ( a - b ) ( a² + ab + b² )
- a³ + b³ + c³ - 3abc = ( a + b + c ) ( a² + b² + c² - ab - bc - ca )
Similar questions