If a²+b²+c²=90 & a+b+c=20.Find the value of ab+bc+ca???
Solution: using ide
Answers
Answered by
11
Using the identity,
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
Given that,
a²+b²+c²=90
and, a+b+c=20
Substituting the appropriate values,
20²=90+2(ab+bc+ca)
→2(ab+bc+ca)=400-90
→2(ab+bc+ca)=310
→ab+bc+ca=155
•The required value is 155.
Verification:
Now,
ab+bc+ca=155 and a²+b²+c²=90
Putting the values,
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
→(a+b+c)²=90+2(155)
→(a+b+c)²=400
→a+b+c=20
Hence, verified
reenajayan23:
thank
Answered by
3
Answer:155
Step-by-step explanation:
(A+b+c)²=a²+b²+c²+2ab+2bc+2ca
(20)²=90+2(ab+bc+ca)
400-90=2(ab+bc+ca)
310/2=ab+bc+ca
155=ab+bc+ca
Similar questions