If (a²+b²)(m²+n²)=(am+bn)², prove that a:m=b:n.
Answers
Answered by
49
(a² + b²)(m² + n²) = (am + bn)²
=> a²(m² + n²) + b²(m² + n²) = a²m² + b²n² +2abmn
=> a²m² + a²n² + b²m² + b²n² = a²m² + b²n² +2abmn
=>a²n² + b²m² -2abmn = 0
=> (an)² + (bm)² -2(an)(bm)= 0
=>(an - bm)² =0
=> an - bm = 0
=> a: m = b:n
hence, proved
=> a²(m² + n²) + b²(m² + n²) = a²m² + b²n² +2abmn
=> a²m² + a²n² + b²m² + b²n² = a²m² + b²n² +2abmn
=>a²n² + b²m² -2abmn = 0
=> (an)² + (bm)² -2(an)(bm)= 0
=>(an - bm)² =0
=> an - bm = 0
=> a: m = b:n
hence, proved
Answered by
4
Answer:
pls mark me as brainlist
Attachments:
Similar questions
English,
1 year ago
Political Science,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago