prove (1+cot alpha -sec (alpha+pi÷2) (1+cot alpha + sec (alpha +pi÷2))
Attachments:
Answers
Answered by
47
{ 1 + cotx - sec( x + π/2) } { 1 + cotx + sec( x + π/2) }
= {1 + cotx - (- cosecx) } { 1 + cotx + (- cosecx) }
= { 1 + cotx + cosecx} { 1+ cotx - cosecx}
= { ( 1 + cotx) ² - cosec²x}
= 1 + cot²x + 2cotx - cosec²x
= 1 - (cosec²x - cot²x ) + 2cotx
= 1 - 1 + 2cotx [ cosec²x - cot²x = 1 ]
=2cotx
Hence proved.
= {1 + cotx - (- cosecx) } { 1 + cotx + (- cosecx) }
= { 1 + cotx + cosecx} { 1+ cotx - cosecx}
= { ( 1 + cotx) ² - cosec²x}
= 1 + cot²x + 2cotx - cosec²x
= 1 - (cosec²x - cot²x ) + 2cotx
= 1 - 1 + 2cotx [ cosec²x - cot²x = 1 ]
=2cotx
Hence proved.
Answered by
8
Here is the answer
Pls mark Brainliest
Attachments:
Similar questions