If (a²+b²)x²+2(ab+bd)x+c²+d²=0 has no real roots, then
(a)ab=bc
(b)ab=cd
(c)ac=bd
(d)ad≠bc
Answers
SOLUTION :
Option (d) is correct : ad ≠ bc
Given : (a² + b²)x² - 2(ac + bd)x + ( c² + d²) = 0
On comparing the given equation with ax² + bx + c = 0
Here, a = (a² + b²) , b = - 2( ac + bd) , c = ( c² + d²)
D(discriminant) = b² – 4ac
= {- 2(ac + bd)}² - 4(a² +b²)(c² + d²)
= 4(ac + bd)² - 4(a² + b²)(c²+ d²)
= 4(a²c²+ b²d² + 2abcd ) - 4( a²c² + a²d² + b²d² + b²c²
[(a + b)² = a² + b² + 2ab]
= 4(a²c² + b²d² + 2abcd - a²c² - a²d² - b²d² - b²c² )
= (a²c² - a²c² + b²d² - b²d² + 2abcd - a²d² - b²c² )
= 2abcd - a²d² - b²c²
= -(a²d² + b²c² - 2abcd)
= a²d² + b²c² - 2abcd
= (ad)² + (bc)² - 2×ad × bc
= (ad - bc)²
[(a - b)² = a² + b² - 2ab]
Given roots are not real so, D < 0
(ad - bc)² < 0
(ad - bc) < 0
ad ≠ bc
HOPE THIS ANSWER WILL HELP YOU...
Concept used:
We know, for no real roots,
Calculation:
Given equation is (a2 + b2) x2 + 2(ab + bd) x + c2 + d2 = 0
Here, a = (a2 + b2), b = 2(ab + bd), c = c2 + d2
Therefore,
(ad - bc) < 0
or ad < bc
∴ ad ≠ bc