Math, asked by phaddy111, 1 year ago

If a3 + b3 = 35 and ab = 6, then what is the value of a + b?


Anonymous: Is it a*3 or a to the power 3
rawatrakesh80owquvt: 5 answer

Answers

Answered by hotelcalifornia
11

Answer:

Thus the value of a + b is 5

To find:

Value of a + b = ?

Solution:

Given : a^3 + b^3 = 35 and ab = 6

Let us take the value of (a+b)=x

We know that the value of  

( a + b ) ^ { 3 } = a ^ { 3 } + b ^ { 3 } + 3 a b ( a + b )

Substituting (a + b) = x in the above expression, we get,

( x ) ^ { 3 } = a ^ { 3 } + b ^ { 3 } + 3 a b ( x )

Substituting the value of ab = 6 and a^3 + b^3 = 35 in the above derived expression

\begin{array} { c } { x ^ { 3 } = 35 + 3 \times 6 ( x ) } \\\\ { x ^ { 3 } = 35 + 18 x } \\\\ { x ^ { 3 } - 18 x = 35 } \\\\ { x \left( x ^ { 2 } - 18 \right) = 35 } \\\\ { x \left( x ^ { 2 } - 18 \right) = 5 \times 7 } \end{array}

Let us take

x=5

And

\begin{array} { c } { x ^ { 2 } - 18 = 7 } \\\\ { x ^ { 2 } = 7 + 18 } \\\\ { x ^ { 2 } = 25 } \\\\ { x = 5 } \end{array}

Thus, the value of x is 5.

x=a+b=5

Thus, the value of a + b is equal to 5

Answered by mysticd
2

Answer:

a+b = 5

Step-by-step explanation:

 Given \: a^{3}+b^{3}=35 ----(1)

and\\ ab = 6 ----(2)

/* By algebraic identity:

\boxed { (a+b)^{3}=a^{3}+b^{3}+3ab(a+b)}*/

Now ,

(a+b)^{3}=35+3\times6(a+b)

=35+18(a+b)

Let (a+b) = x , we get

x^{3}=35+18x

if x = 5 ,

5³=35+18×5

=> 125 = 35 + 90

=> 125 = 125 (true)

Therefore,

x = (a+b) = 5

Similar questions