Math, asked by Anonymous, 1 year ago

If a⁴+1\a⁴=727, then the value of a³—1\a³ is ________.

Answers

Answered by Muskan1101
24
Here's your answer!!

_______________________________

It is given that,

 = > {a}^{4} + \frac{1}{ {a}^{4} } = 727

By adding 2 both side ,we get :-

 = > {a}^{4} + \frac{1}{ {a}^{4} } + 2 = 727 + 2

We can write it as ,

 = > {( {a}^{2} )}^{2} + \frac{1}{ { ({a}^{2}) }^{2} } + 2 \times {a}^{2} \times \frac{1}{ {a}^{2} } = 729

 = > {( {a}^{2} + \frac{1}{ {a}^{2} } )}^{2} = {(27)}^{2}

========================
identity \: used = \\ = > \: {(a + b)}^{2} = {a}^{2} + {b}^{2} + 2 \times a \times b)
=========================

 = > {a}^{2} + \frac{1}{ {a}^{2} } = 27

Now,

By subtracting 2 from both side ,we get :-

 = > {a}^{2} + \frac{1}{ {a}^{2} } - 2 = 27 - 2

We can write it as :-

 = > {a}^{2} + \frac{1}{ {a}^{2} } - 2 \times a \times \frac{1}{ a} = 27 - 2

============================
identity \: used = \: \\ = > {(a - b)}^{2} = {a}^{2} + {b}^{2} - 2 \times a \times b
=============================

 = > (a - \frac{1}{a} ) = 5.......(i)

Now,

By cubing both side , we get :-

 = > {(a + \frac{1}{a} )}^{3} = {(5)}^{3}

 = > {a}^{3} - \frac{1}{ {a}^{3} } - 3 \times a \times \frac{1}{a} (a - \frac{1}{a} ) = 125

==============================
identity \: used = \\ = > {(a - b)}^{3} = {a}^{3} - {b}^{3} - 3ab(a - b)
===============================

By substituting value of equation (i) ,we get :-

 = > {a}^{3} - \frac{1}{ {a}^{3} } - 3 \times a \times \frac{1}{a} (5) = 125

 = > ({a}^{3} - \frac{1}{ {a}^{3} } ) - 15 = 125

 = > ({a}^{3} - \frac{1}{ {a}^{3} } ) = 125 + 15

 = > ( {a}^{3} - \frac{1}{ {a}^{3} }) = 140

____________________________

Hope it helps you!! :)

Anonymous: thank you so much for this wonderful explaination
Muskan1101: Welcome !! :)
Answered by pnagarajunagaraju906
0

Answer:

140

Step-by-step explanation:

I think it's right answer

Similar questions