Math, asked by yasss22, 11 months ago

IF AB, AC are the equal sides of an isosceles triangle, prove that tan A/2=cotB.​

Answers

Answered by MaheswariS
8

Answer:

tan\frac{A}{2}=cotB

Step-by-step explanation:

Given:

∆ABC is an isoceles triangle with AB = AC

⇒ B = C

We know that sum of all the angles of a triangle is 180 degrees.

⇒ A+B+C=180

⇒ A+B+B=180

⇒ A+2B=180

Divide both sides by 2

\frac{A}{2}+B=90

\implies\:tan(\frac{A}{2}+B)=tan90

\implies\:\frac{tan\frac{A}{2}+tanB}{1-tan\frac{A}{2}\:tanB}=∞

\implies\:1-tan\frac{A}{2}\:tanB=0

\implies\:1=tan\frac{A}{2}\:tanB

\implies\:\frac{1}{tanB}=tan\frac{A}{2}

\implies\:cotB=tan\frac{A}{2}

\implies\:tan\frac{A}{2}=cotB

Answered by kaaku
9

Answer:

Step-by-step explanation:

A+B+C=180

BCOZ Isosceles B=C

A+2B=180

Divide by 2 for A/2

A/2+B=90

A/2=90-B

Multiply both side with tan

tan A/2 = tan(90-B)

tan A/2= cot B

Similar questions