If ab+ bc+ ca= 0 . find the value of 1/a²-bc + 1 /b²-ca + 1/c²-ab
Answers
Answered by
1
Given
ab + bc + ca = 0
⇒ bc = - ab - ca = -a (b+c)
⇒ a² - bc = a (a - b - c)
similarly,
b² - ca = b (b - c - a) and c² - ab = c (c - a - b)
1/(a²-bc) + 1/(b²-ca) + 1/(c² -ab)
= [(b²-ca)(c²-ab) + (c²-ab)(a²-bc) + (a²-bc)(b²-ca) ] / [(a²-bc)(b²-ca)(c²-ab)]
we simplify the numerator.
= [ b²c² - ac³ - a b³ +a²bc +a²c² - ba³ - bc³ + ab²c + a²b² - cb³ -ca³ + abc² ]
= [ b²(c²-ab+ac+a²-bc) + c²(-ac+a²-bc+ab) + a² (bc-ab-ca)
we use the given identity.
= [ b² (c² +a²+2 ac) + c² (a² +2ab) + a²(2bc) ]
= [ b² (c + a)² + a² c² + 2a²bc + 2abc² ]
= [ { bc + ba}² + a²c² + 2ac (ab + bc) ]
we use the given identity again.
= [ {-ac}² + a² c² + 2 ac (-ac) ]
= [ {-ac}² + a² c² - 2 a²c²]
= [ {-ac}² - a² c² ]
= [ -a²c² - a² c² ]
= 0
⇒0
ab + bc + ca = 0
⇒ bc = - ab - ca = -a (b+c)
⇒ a² - bc = a (a - b - c)
similarly,
b² - ca = b (b - c - a) and c² - ab = c (c - a - b)
1/(a²-bc) + 1/(b²-ca) + 1/(c² -ab)
= [(b²-ca)(c²-ab) + (c²-ab)(a²-bc) + (a²-bc)(b²-ca) ] / [(a²-bc)(b²-ca)(c²-ab)]
we simplify the numerator.
= [ b²c² - ac³ - a b³ +a²bc +a²c² - ba³ - bc³ + ab²c + a²b² - cb³ -ca³ + abc² ]
= [ b²(c²-ab+ac+a²-bc) + c²(-ac+a²-bc+ab) + a² (bc-ab-ca)
we use the given identity.
= [ b² (c² +a²+2 ac) + c² (a² +2ab) + a²(2bc) ]
= [ b² (c + a)² + a² c² + 2a²bc + 2abc² ]
= [ { bc + ba}² + a²c² + 2ac (ab + bc) ]
we use the given identity again.
= [ {-ac}² + a² c² + 2 ac (-ac) ]
= [ {-ac}² + a² c² - 2 a²c²]
= [ {-ac}² - a² c² ]
= [ -a²c² - a² c² ]
= 0
⇒0
Similar questions