if ab+bc+cd=0 for every negative integer a,b,c,d the value of a×b×c×d=
Answers
Answered by
1
Step-by-step explanation:
If ab+bc+ca=0, find the value of (1/a²-bc)+(1/b²-ca)+(1/c²-ab) Get ... (ab+bc+ ca)/(a+b+c) abc = (a+b+c) abc/(a+b+c) abc = 0.
Answered by
0
Answer:
Required value is 0.
Step-by-step explanation:
Let abcd= x.....(1)
Given,ab+bc+cd=0......(2)
So,ab=x/cd and bc=x/ad and cd=x/bd
From equation (2)
ab+bc+cd=0
we are putting value of ab,bc and cd,
(x/cd)+(x/ad)+(x/bd)=0
→x(1/cd)+(1/ad)+(1/bd)x
x[1/cd)+(1/ad)+(1/bd)]=0
x=0/[1/cd)+(1/ad)+(1/bd)
So,x=0
Therefore abcd=x=0
This is a problem of Algebra.
Some important formulas of algebra,
(a + b)² = a² + 2ab + b²
(a − b)² = a² − 2ab − b²
(a + b)³ = a³ + 3a²b + 3ab² + b³
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)³ − 3ab(a + b)
a³ - b³ = (a -b)³ + 3ab(a - b)
Similar questions