Math, asked by akash9499, 10 months ago

If ab is a two-digit number and a, b, x,y are digits
satisfying (ab)2 = x! + y, then which of the following
may be true?

Answers

Answered by amitnrw
0

Given:   (ab)² = a!+b   ab is a two-digit number  

To find : a & b

Solution:

a! + b  = (ab)²

ab = 10a + b

if a = 0 then  0! + b = b²  => b² - b - 1 = 0  ( no real value of b )

=> if a = 1 then 10a + b ≥ 10  => (ab)² ≥ 100  but 1 ! = 1

a = 2 then 10a + b ≥ 20  =>  (ab)²  ≥ 400  but 2 ! = 2

a = 3 then 10a + b ≥ 30  =>  (ab)²  ≥ 900  but 3 ! = 6

a = 4 then 10a + b ≥ 40  =>  (ab)²  ≥ 1600  but 4 ! = 24

a = 5 then 10a + b ≥ 50  =>  (ab)²  ≥ 2500  but 5 ! = 120

a = 6 then 10a + b ≥ 60  =>  (ab)²  ≥ 3600  but 5 ! =720

a = 7 then 80 > 10a + b ≥ 70  => 6400 >  (ab)²  ≥  4900  ,  7 ! =5040

7! lies between 4900 & 6400

lets take b = 1

then (ab)² = 71² = 5041

a! + b = 5040 + 1 = 5041

5041 = 5041

=> a! + b  = (ab)²

Hence a = 7  & b = 1

a = 8  then 90 ≥ 10a + b ≥ 8 0  =>8100 > (ab)²  ≥  6400  but 8 ! =40320

Hence not possible

a = 7  & b = 1  is only solution

Learn more:

what is the highest power of 91 that divides 78! ? - Brainly.in

brainly.in/question/11090581

the largest positive integer k such that 12^k divides (109)! is - Brainly.in

brainly.in/question/9532149

https://brainly.in/question/16321940

Similar questions