If AB is parallel to CD. Find value of x and y?
Attachments:
Answers
Answered by
2
Answer:
in fig. it is given that AB is parallel to CD
so, 20° + y = 58° [corresponding angles]
=> y = 58° - 20° = 38°
now, in ∆PQR,
x + y + 100° = 180° [angle sum property of a ∆]
x + 38° + 100° = 180°
=> x = 180° - 138° = 42°
hope it helps you
thanks
Answered by
1
50°+y+BPR=180°(linear pair)
BPR+PRD=180°(interior angle on same side of the transversal)
Therefore,BPR+127°=180°
BPR=180°- 127°=53°
y=180°- 50°-53°
y=180°-103°
y=77°
PRQ+PRD=180°(linear pair)
PRQ=180°-127°
PRQ=53°
x+y+PRQ=180°
x=180°-77°-53°
x=50°
BPR+PRD=180°(interior angle on same side of the transversal)
Therefore,BPR+127°=180°
BPR=180°- 127°=53°
y=180°- 50°-53°
y=180°-103°
y=77°
PRQ+PRD=180°(linear pair)
PRQ=180°-127°
PRQ=53°
x+y+PRQ=180°
x=180°-77°-53°
x=50°
Similar questions