Math, asked by Sayandip, 1 year ago

if abc = 1,prove that:
1/(1+a+b^-1) + 1/(1+b+c^-1) + 1/(1+c+a^-1) =1

Answers

Answered by riyathakur73
104

Answer:

hope it helps u..........

Attachments:
Answered by pulakmath007
9

\displaystyle \sf{  \frac{1}{1 + a +  {b}^{ - 1} } +\frac{1}{1 + b +  {c}^{ - 1} } + \frac{1}{1 + c +  {a}^{ - 1} }   } = 1 \:  \: is \:  \:  \bf{proved}

Given :

abc = 1

To find :

To prove

\displaystyle \sf{  \frac{1}{1 + a +  {b}^{ - 1} } +\frac{1}{1 + b +  {c}^{ - 1} } + \frac{1}{1 + c +  {a}^{ - 1} }   } = 1

Solution :

Step 1 of 2 :

Find the value of c

abc = 1

\displaystyle \sf{ \implies c =  \frac{1}{ab} }

Step 2 of 2 :

Prove the expression

\displaystyle \sf{  \frac{1}{1 + a +  {b}^{ - 1} } +\frac{1}{1 + b +  {c}^{ - 1} } + \frac{1}{1 + c +  {a}^{ - 1} }   }

\displaystyle \sf{ =   \frac{1}{1 + a +   \frac{1}{b}  } +\frac{1}{1 + b +  \frac{1}{c}  } + \frac{1}{1 + c + \frac{1}{a}  }   }

\displaystyle \sf{ =   \frac{1}{ \frac{b + ab + 1}{b}  } +\frac{1}{1 + b +  ab  } + \frac{1}{1 +  \frac{1}{ab}  + \frac{1}{a}  }   }

\displaystyle \sf{ =  \frac{b}{1 + b +  ab  } +\frac{1}{1 + b +  ab  } + \frac{1}{  \frac{ab + 1 + b}{ab} }   }

\displaystyle \sf{ =  \frac{b}{1 + b +  ab  } +\frac{1}{1 + b +  ab  } + \frac{ab}{1 + b +  ab  }   }

\displaystyle \sf{ =  \frac{b + 1 + ab}{1 + b +  ab  }   }

\displaystyle \sf{ =  \frac{1 + b  + ab}{1 + b +  ab  }   }

\displaystyle \sf{ = 1}

Hence the proof follows

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. 3a=5b and 6b=7c what is the value of a:b:c

https://brainly.in/question/31811491

2. Ifa : b=c:d=e: f= 2:1, then (a + 2c + 3e) : (5b + 10d + 15f) is equal to:

https://brainly.in/question/23293448

3. If p/2q = 11/5 then p-2q/p+2q = ?

https://brainly.in/question/34239839

Similar questions