Math, asked by marathesahebrav, 8 months ago

If. ∆ABC~PQR and AB:PQ=2:3 then the ratio of area of them is.....​

Answers

Answered by sonisiddharth751
6

Answer:

\large\bf\underline\red{Question ➡} \\ \sf \: if \: ∆ABC \:  similar \:  ∆PQR \: and \:  \\\sf AB:PQ \:  = 2:3 \: then \: the \: ratio \: of \:  \\\sf \: their area \: is \:  ? \\  \\ \large\bf\underline\red{given \: that \: ➡} \\  \\\bf✫ \:  ∆ABC \:  similar \:  ∆PQR \\ \bf✫ \:  AB:PQ \:  = 2:3  \\  \\ \large\bf\underline\red{solution➡} \\  \\\sf\blue{we \: know \: that \: the \:ratio \: of \: the \:  areas \: } \\ \sf\blue{of \: two \: similar \: triangle \:is \: equal \: to \:  } \\ \sf\blue{the \: ratios \: of \: the \: squares \: } \\\sf\blue { of \:any \: two \: corresponding \:sides } \\  \\ \small\bf\underline\red{therefore ➡} \\  \\ \sf \frac{ar( ∆ABC)}{ar(∆PQR)}  =  \frac{ {(AB)}^{2} }{ {(PQ)}^{2} }  \\  \\ ➡ \sf \frac{ar( ∆ABC)}{ar(∆PQR)}  = \frac{ {(2)}^{2} }{ {(3)}^{2} }  \\  \\ ➡ \sf \frac{ar( ∆ABC)}{ar(∆PQR)}  = \large{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{4/9}}}}

ratio of their areas➡

∆ABC:∆PQR = 4:9

Similar questions