Math, asked by mundeprasad735, 5 months ago

if ∆abc~∆pqr angle a+angle b=100° then angle r=​

Answers

Answered by mathdude500
0

Answer:

 \boxed{\bf \: \angle \: r = {80}^{ \circ} \: } \\

Step-by-step explanation:

Given that,

\sf \:  \triangle \: abc \:  \sim \:  \triangle \: pqr \\

So, by corresponding parts of similar triangles, we have

\implies\sf \:  \angle \: a = \angle \: p \\

\implies\sf \:  \angle \: b = \angle \: q \\

\implies\sf \:  \angle \: c= \angle \: r \\

Further given that,

\sf \: \angle \: a + \angle \: b =  {100}^{ \circ}  \\

can be further rewritten as

\sf \: \angle \: p + \angle \: q=  {100}^{ \circ}  \\

\left[ \because \:\sf \: \angle \: a = \angle \: p, \:  \: \angle \: b = \angle \: q \right]

Now, In triangle pqr,

We know, sum of all interior angles of a triangle is 180°.

\sf \: \angle \: p + \angle \: q + \angle \: r=  {180}^{ \circ}  \\

\sf \: {100}^{ \circ} + \angle \: r=  {180}^{ \circ}  \\

\left[ \because \: \sf \: \angle \: p + \angle \: q = {100}^{ \circ}\right] \\

\sf \:  \angle \: r=  {180}^{ \circ}  - {100}^{ \circ} \\

\implies\sf \: \angle \: r = {80}^{ \circ} \\

Hence,

\implies\sf \: \boxed{\bf \: \angle \: r = {80}^{ \circ} \: } \\

Answered by Aʙʜɪɪ69
0

Step-by-step explanation:

Hope this helps you!!!!!

Attachments:
Similar questions