Math, asked by Snigdha7598, 8 months ago

if alfa and beta are the zeroes of quadratic polonomial x2-5x+4 then the value of alfa/beta and beta/alfa is

Answers

Answered by Anonymous
4

Correct Question:

If \sf{\alpha} and \sf{\beta} are the zeroes of quadratic polynomial x² - 5x + 4, then find the value of \sf{\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}}.

Step-by-step explanation:

Given :-

  • \sf{\alpha} and \sf{\beta} are the zeroes of quadratic polynomial x² - 5x + 4.

To find :-

  • Value of \sf{\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}}.

Solution :-

Quadratic polynomial :

x² - 5x + 4 = 0..............(i)

On comparing eq(i) with ax² + bx + c = 0, we get,

  • a = 1
  • b = -5
  • c = 4

We know,

{\boxed{\sf{Sum\:of\: zeroes=\dfrac{-b}{a}}}}

{\boxed{\sf{Product\:of\: zeroes=\dfrac{c}{a}}}}

Then,

 \sf \:  \alpha  +  \beta  =  \dfrac{ - ( - 5)}{1}  = 5

&

 \sf \:  \alpha  \beta  =  \dfrac{4}{1}  = 4

Now find the value of \sf{\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}}.

 \sf \:  =  \dfrac{ \alpha }{ \beta }  +  \dfrac{ \beta }{ \alpha }  \\  \\  =  \sf \dfrac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta }  \\  \\  =  \sf \dfrac{ {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }{ \alpha  \beta }  \\  \\  =  \sf \dfrac{ {5}^{2}  - 2 \times 4}{4}  \\  \\  \sf \:  =  \dfrac{25 - 8}{4}  \\  \\  \sf \:  =  \dfrac{17}{4}

Therefore, the value of \sf{\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}} is 17/4.

Similar questions