Math, asked by dhivyamadhavan0106, 9 months ago

if alfa and beta are zeros of polynomial p(x)=3x²-10x+7find value of alfa²+beta²​

Answers

Answered by akhandpratapsingh92
0

Step-by-step explanation:

let a and b are two zeros of polynomial

a+b=10/3

ab=7/3

squaring (a+b) on both sides

a^2+b^2+2ab=100/9

a^2+b^2=100/9-14/3=100-42/9=58/9

Answered by akshatnarayansingh20
1

Answer:

plzzzz mark this as the brainliest answer

Step-by-step explanation:

Product of zeros = αβ= constant / coefficient of x^2 = 4/k

Sum of zeros =α+β = - coefficient of x / coefficient of x^2= -4/k

Given

(\alpha)^2 + (\beta)^2 = 24(α)

2

+(β)

2

=24

(\alpha)^2 + (\beta)^2(α)

2

+(β)

2

can be written as (\alpha)^2 + 2(\alpha)(\beta) + (\beta)^2(α)

2

+2(α)(β)+(β)

2

if we add \pm 2 (\alpha)(\beta)±2(α)(β) in the above equation.

(\alpha)^2 + 2(\alpha)(\beta) + (\beta)^2 -2(\alpha)(\beta)(α)

2

+2(α)(β)+(β)

2

−2(α)(β)

(\alpha + \beta)^2 -2(\alpha)(\beta)(α+β)

2

−2(α)(β)

Putting values of αβ and α+β

\begin{gathered}(\frac {-4}{k})^2 -2( \frac {4}{k}) = 24\\\frac {16}{k^2} - \frac {8}{k} = 24\\Multiplying\,\, the \,\, equation\,\, with\,\, 8K^2\\ 2 - k= 3K^2\\3k^2-2+k=0\\or\\3k^2+k-2=0\\3k^2+3k-2k-2=0\\3k(k+1)-2(k+1)=0\\(3k-2)(k+1)=0\\3k-2=0 \,\,and\,\, k+1 =0\\k= 2/3 \,\,and\,\, k=-1\end{gathered}

(

k

−4

)

2

−2(

k

4

)=24

k

2

16

k

8

=24

Multiplyingtheequationwith8K

2

2−k=3K

2

3k

2

−2+k=0

or

3k

2

+k−2=0

3k

2

+3k−2k−2=0

3k(k+1)−2(k+1)=0

(3k−2)(k+1)=0

3k−2=0andk+1=0

k=2/3andk=−1

The values of k are 2/3 and -1

Similar questions