If alfa and bita are the zeroes of the quadratic polynomial f(x)=kx^2+4x+4 such that alfa^2 +bita^2=24 find the value of k
Answers
Correct Question : If α and β are zeroes of the quadratic Polynomial f(x) = kx² + 4x + 4 such that α² + β² = 24. Find the value of k.
SOLUTION :
Given,
Quadratic Equation :
f(x) = kx² + 4x + 4
α² + β² = 24
We know that,
Sum of zeroes using coefficients :
α + β = -b/a
α + β = -4/k
Product of zeroes using coefficients :
αβ = c/a
αβ = 4/k
α² + β² = 24
α² + β² = (α + β)² - 2αβ
(α + β)² - 2αβ = 24
(-4/k)² - 2(4/k) = 24
16/k² - 8/k = 24
8 [ 2/k² - 1/k ] = 24
2/k² - 1/k = 24/8
2/k² - 1/k = 3
2 - k = 3k²
3k² + k - 2 = 0
3k² + 3k - 2k - 2 = 0
3k(k + 1) - 2(k + 1) = 0
k + 1 = 0 ; 3k - 2 = 0
k = -1 ; 3k = 2
k = -1 ; k = 2/3
Therefore, k = -1 or 2/3.
f(x)= kx^2 + 4x +4
alpha + beta = -4/k
alpha × beta = 4/k
alpha^2 + beta^2= ( alpha+ beta)^2 - 2 alpha × beta
24 = 16/k^2 - 2( 4/k)
24 = 16/k^2 - 8/k
3k^2 + k - 2 = 0
3k^2 +3k -2k -2 = 0
3k( k+1) -2( k+1)= 0
(3k -2)( k+1)=0
k= 2/3,-1