Math, asked by shagunchauhan0304, 5 months ago

if alfa and bitta are the zeroes of the polynomial f(x)=6x²-3-7x then (alfa+1) (bitta+1) is equal to​

Answers

Answered by brainlyofficial11
2

Given :-

we have a polynomial

  • 6x² - 7x - 3 = 0

To Find :-

  • value of (alpha + 1) (beta + 1)

Solution :-

firstly compare the polynomial with ax² + bx + c = 0

and we know that,

 \boxed {\bold{sum \: of \: zeroes =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }}

and

  \boxed{\bold{ product \: of \: zeroes =  \frac{constant \: term}{coefficient \: of \:  {x  }^{2} } }}

and here, in 6x² - 7x - 3 = 0

  • coefficient of x² = 6
  • coefficient of x = -7
  • constant term = -3

zeroes of the polynomial are α and β

 \bold{: \implies  \alpha  +  \beta  =  \frac{ - ( - 7)}{6} =  \frac{7}{6}   } .......(i)\\

and

 \bold{:  \implies  \alpha  \beta  =  \frac{ - 3}{6}  =  - 3}.......(ii) \\

now, we have to find value of

( \alpha  + 1)( \beta  + 1) \\  \\  \bold{: \implies  \alpha  \beta  +  \alpha  +  \beta  + 1 }

put following values from eq.(i) and (ii)

  • α + β = 7/6
  • αβ = -3

 \bold{:  \implies \frac{7}{6}  - 3 + 1 }  \:  \: \\  \\  \bold{:  \implies  \frac{4 - 18 + 6}{6} } \\  \\  \bold{:  \implies  \cancel \frac{8}{6} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies  \frac{4}{3}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, value of (α + 1)(β + 1) is 4/3

Similar questions