Math, asked by pragathichalla8, 6 days ago

If Alfa , beta are the roots of x^2-x+2 = 0, then alfa^2Beta + alfa beta^2 is​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \: of \:  {x}^{2} - x + 2 = 0

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  +  \beta  =  - \dfrac{( - 1)}{1}  = 1

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  \beta  = \dfrac{2}{1}  = 2

Now,

\rm :\longmapsto\: { \alpha }^{2} \beta  +  { \beta }^{2}  \alpha

\rm \:  =  \: \alpha  \beta ( \alpha  +  \beta )

So, on substituting the values, we get

\rm \:  =  \:1 \times 2

\rm \:  =  \:2

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: { \alpha }^{2} \beta  +  { \beta }^{2}  \alpha  = 2 \: }}

More to know :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Answered by khushi15686
2

Step-by-step explanation:

alfa^2Beta + alfa beta^2 = 2

Hope it helps you

Similar questions