Math, asked by Troy9454, 1 year ago

If all permutations of the letters of the word AGAIN are arranged in the order as in a dictionary. What is the 49th word?

Answers

Answered by Avengers00
56
\underline{\LARGE{\textsf{Concept \: Behind}}}

\large{\blacktriangleright}\: \normalsize\sf \textsf{In a dictionary, all the words and letters in a Word}\\\sf\textsf{follows Alphabetical Order.}

\large{\blacktriangleright}\: \ \normalsize \sf\textsf{If there are \textbf{n} things,}\\\sf\textsf{No. of different arrangements that can be made} \\ \sf\textsf{considering \textbf{r} things(where r $\leq$ n) is given by}\\\qquad\bigstar \qquad \boxed{\displaystyle\Large{^{n}P_{r} = \dfrac{n\: !}{(n\: -\: r)\: !}}}

\large{\blacktriangleright} \: \sf\normalsize{\textsf{If there exists a total of \textbf{n} things,out of which}}\\\sf\textsf{$p_{1}$ things are the same of one kind;} \\ \sf\textsf{$p_{2}$ things are the same of another kind;}\\\sf\textsf{$p_{3}$ things are the same of third kind};\\\sf\textsf{and so on and}
\sf\textsf{$p_{r}$ are the same of rth kind,};\\\sf\textsf{such that } \mathbf{\left(<br />p_{1} + p_{2} + p_{3} + ....... +p_{r}\right) = n}}

\sf\textsf{Then, the Number of permutations}\\\sf\textsf{of these n things is :}\\\qquad\bigstar \qquad \boxed{\Large{\dfrac{n!}{\left(p_{1}!\right)\cdot\left(p_{2}!\right)\cdot\left(p_{3}!\right)......\left(p_{r}!\right)}}}

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\sf\textsf{Given Word = }\Large{\mathbb{AGAIN}}

\underline{\Large{\textsf{Step-1:}}}
\sf\textsf{Note the Number of Letters and}\\\sf\textsf{Repe}\sf\textsf{ated Letters in the given letters.}

No. of Letters in the word = 5

No. of Repeated Letters= 2
\sf\textsf{(Two A's)}

\underline{\Large{\textsf{Step-2:}}}
\sf\textsf{Arrange the Letters of the given word}\\\sf\textsf{in Alphabetical order}
\textsf{(Without considering Rep}\sf\textsf{eated Letters)}

\maltese \quad \sf\textsf{The Order will be : \: } \large{\mathbb{A,\: G ,\: I,\: N}}

\underline{\Large{\textsf{Step-3:}}}
\sf\textsf{Find No. of Words starting with A}\\\sf\textsf{that can be arranged using the letters}\\\sf\textsf{A, G, I and N}

No. of Words Starting with A, is equal to No. of ways of arranging the remaining Letters in 4 empty boxes, after fixing A as First letter.

\underline{\bf \mathbb{A}} \quad \underbrace{\square \quad \square \quad \square \quad \square }_{4\: \text{letters}} \\\small{\boxed{\text{Letters available = 1 A, 1 G, 1 I, 1 N}}}

No. of ways of arranging 4 letters in the 4 empty boxes = \sf\textsf{$^{4}P_{4}$ = 4! = 24}

\therefore \sf\textsf{No. of words start with A = 24}

\underline{\Large{\textsf{Step-4:}}}
\sf\textsf{Find No. of Words starting with G}\\\sf\textsf{that can be arranged using the letters}\\\sf\textsf{A, A, I and N}

No. of Words Starting with G, is equal to No. of ways of arranging the remaining Letters in 4 empty boxes, after fixing G as First letter.

\underline{\bf \mathbb{G}} \quad \underbrace{\square \quad \square \quad \square \quad \square }_{4\: \text{letters}} \\\small{\boxed{\text{Letters available = 2 A's, 1 I, 1 N}}}

No. of ways of arranging 4 letters in the 4 empty boxes (with 2 letters being repeated)=\sf\textsf{$\dfrac{4!}{2!}$= 4$\times$3 = 12}

\therefore \sf\textsf{No. of words start with G = 12}

\underline{\Large{\textsf{Step-5:}}}
\sf\textsf{Find No. of Words starting with I}\\\sf\textsf{that can be arranged using the letters}\\\sf\textsf{A, A, I and G}

\underline{\bf \mathbb{I}} \quad \underbrace{\square \quad \square \quad \square \quad \square }_{4\: \text{letters}} \\\small{\boxed{\text{Letters available = 2 A's, 1 G, 1 N}}}

No. of ways of arranging 4 letters in the 4 empty boxes (with 2 letters being repeated)=\sf\textsf{$\dfrac{4!}{2!}$= 4$\times$3 = 12}

\therefore \sf\textsf{No. of words start with I = 12}

\underline{\Large{\textsf{Step-6:}}}
\sf\textsf{Note the Total No. of words}

\textsf{Here, we have}
\boxed{ \rm \: \sf 48 \: words\begin{cases}24&amp;\text{Words start with \bf{A}}\\12&amp;\text{Words start with \bf{G}}\\12&amp;\text{Words start with\; \bf{I}}\end{cases}}

\underline{\Large{\textsf{Step-7:}}}
\sf\textsf{Note the starting letter of 49th Word}

\sf\textsf{As per the Alphabetical order,}\\\sf\textsf{The 49th word Starts with N}

\underline{\bf \mathbb{N}} \quad \underbrace{\square \quad \square \quad \square \quad \square }_{4\: \text{letters}} \\\small{\boxed{\text{Letters available = 2 A's, 1 G, 1 I}}}

\underline{\Large{\textsf{Step-8:}}}
\sf\textsf{Arrange the Remaining letters}\\\sf\textsf{in Alphabetical order}

\boxed{\mathbb{N}}\boxed{\mathbb{A}}\boxed{ \mathbb{A}}\boxed{ \mathbb{G}}\boxed{ \mathbb{I}}

\blacksquare\: \: \sf\textsf{The required 49th word is \underline{\Large{\textbf{NAAGI}}}}

Pakhi44: :fb_wow: :clapping:
Avengers00: Thank you (:
QGP: Wonderful Answer!
Avengers00: Thank you ((: @QGP bro
palkin: amazing answer ✌✌✌
HappiestWriter012: Awesome, Glad to see the dedication and passion to type in Latex. :)
Avengers00: Thank you so much :D
Swarnimkumar22: Really yaar well Done
Avengers00: Thank you :)
Answered by ritviks2004
3

Step-by-step explanation:

A G A I N <=> A A G I N .

  1. No. of words starting with A = 4! = 24
  2. No. of words starting with G = 4!/2! = 12
  3. No. of words starting with I = 4!/2! = 12

Total No of words = 48 . (i)

As we know the very next word will start with N ( Also the word includes AAGI after N )

Therefore , 49th word = NAAGI ( from i )

Thanks .........

Similar questions