Math, asked by kmparikh0804, 8 months ago

if all the solutions of the inequality x² -6ax + 5a²<=0 are also the solutions of inequality x²- 14x + 40<=0 then find the number of possible integral values of a.​

Answers

Answered by dynamobhaiya
2

Answer:

if x square -6ax + 5 bada hoga bada and equal to zero are also the solution of inequality x square - 14x + 40 is bigger and equal to zero then

x ≤0

and, a = 50 , 10

Answered by knjroopa
2

Step-by-step explanation:

  • So let p(x) = x^2 – 6ax + 5a^2
  •                   = x^2 – ax – 5ax + 5a^2
  •                   = x(x – a) – 5a (x – a)
  •                    (x – a) (x – 5a) = 0
  •                  Or x = a,5a
  • So let q(x) = x^2 – 14 x + 40
  •                   = x^2 – 10 x – 4x + 40
  •                 So x(x – 10) – 4(x – 10) = 0
  •                       (x – 10)(x – 4) = 0
  •                             So x = 10,4
  • Now q(m) ≤ 0 and q(5m) ≤ 0
  •       Or q(x) ≤ 0
  • So we get m^2 – 14m + 40 ≤ 0
  •          Or (m – 10)(m – 4) = 0
  •               Or m = 10,4
  • So we have 4 ≤ m ≤ 10-------1
  • Also 2q(5m) ≤ 0
  • So m^2 – 14(5m) + 40
  •     (5m)^2 – 14(5m) + 40
  •        25 m^2 – 70 m + 40 ≤ 0
  •        25m^2 – 50m – 20m + 40 ≤ 0
  •          25 m(m – 2) – 20(m – 2) ≤ 0
  •            So (m – 2) (25m – 20) ≤ 0
  •             Or m – 2 = 0  25 m – 20 ≤ 0
  •             Or m = 2, m = 4/5
  •        Now 4/5 ≤ m ≤ 2 -------- 2
  • So from 1 and 2 on integration we get 0. Therefore the number of possible values is 0.

Reference link will be

https://brainly.in/question/28524191

Similar questions