Math, asked by sarhadole8411, 9 months ago

If alpha=√2 and beta =√5 what is the quadratic equation

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Quadratic\:eqn\to x^{2}-(\sqrt{2}+\sqrt{5})x+\sqrt{10}=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }}  \\  \tt:  \implies  \alpha  =  \sqrt{2}  \\  \\ \tt:  \implies   \beta =  \sqrt{5} \\  \\ \red{\underline \bold{To \: Find : }} \\  \tt:  \implies Quadratic \: eqn = ?

• According to given question :

 \bold{For \: sum \: of \: zeroes} \\   \green{\tt:  \implies  \alpha  +  \beta  =  \sqrt{2}  +  \sqrt{5} } \\  \\  \bold{For \: product \: of \: zeroes} \\  \tt:  \implies  \alpha  \beta  =  \sqrt{2}  \sqrt{5}  \\  \\  \green{\tt:  \implies  \alpha  \beta  = \sqrt{10} } \\  \\  \bold{For \: quadratic \: eqn : } \\  \tt:  \implies   {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes) = 0 \\  \\ \tt:  \implies  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta = 0  \\  \\  \green{\tt:  \implies  {x}^{2}  - ( \sqrt{2}   +  \sqrt{5} )x +  \sqrt{10}  = 0}

Answered by AdorableMe
14

GIVEN :-

α = √2

β = √5

TO FIND :-

☛ The quadratic equation whose zeros are α and β.

SOLUTION :-

Sum of the zeros :

S = α + β

= √2 + √5

Product of the zeros :

P = √2 × √5

= √10

We know that, a quadratic equation is in the following form :-

x² - (sum of the zeros)x + (product of the zeros) = 0

x² - Sx + P = 0

So, the required quadratic equation is :

x² - (√2 + √5)x + √10 = 0                  ...\boxed{\huge\tt {\color{orange} {ANSWER}}}

Similar questions