Math, asked by vaishalilikhar1983, 10 months ago

If alpha and 1/alpha are zeros of the polynomial 4xsq -2x+(k-4)find k

Answers

Answered by Anonymous
14

AnswEr:

Value of k is 8.

ExplanaTion:

Given Polynomial :

  • 4x² - 2x + (k - 4)

Zeroes :

  • \alpha

  • \dfrac{1}{\alpha}

We know that,

\large{\boxed{\sf{\red{Product\:of\:zeroes\:=\:\dfrac{c}{a}}}}}

: \implies \sf{\alpha \times \dfrac{1}{\alpha}} = \sf{\dfrac{k\:-\:4}{4}}

: \implies 1 = \sf{\dfrac{k\:-\:4}{4}}

: \implies 4 = k - 4

: \implies k = 4 + 4

: \implies k = 8

\therefore Value of k is 8.

Answered by Saby123
4

 \tt{ \purple{ \implies{f(x) = 4 {x}^{2} - 2x + (k - 4) }}}

 \alpha  + \dfrac{1}{ \alpha  }=  \dfrac{ - b}{a}  =  \dfrac{1}{2}

 1 =  \dfrac{c}{a}  =  \dfrac{k - 4}{4}

 \implies k = 8 .........(A)

Similar questions