Math, asked by nishadevi0978, 1 year ago

If alpha and beeta are the zeroes of aquadratic polynomial xsquare minus five then form a quadratic polynomial whose zeroes are one plus alpha and one plus beeta

Answers

Answered by chirakshigupta97
1

Answer:

x²-2x -24  

Step-by-step explanation:

Put x²-5=0

(x)²-(√5)²=0

(x-5) (x+5) =0             Using identity a²-b²=(a-b)(a+b)

Either x-5=0            or        x+5=0

So,     x=5   or x= -5

⇒ α=5 and β= -5


Zeroes of another quadratic polynomial are

1+α  =  1+5   =  6

1+β  =  1+(-5)   = 1-5   =  -4

Sum of zeroes =  -4+6   =  2

Product of zeroes  =  (-4) × 6  =  -24

Polynomial  =   x²-Sx+P        (S →Sum  and   P →Product )

=x²- 2x +(-24)

⇒x²-2x -24  

Similar questions