Math, asked by Ayesha030706, 13 days ago

IF ALPHA AND BEETA ARE THE ZEROES OF THE QUADRATIC POLYNOMIAL F (X)=X^2-X-4 FIND THE VALUE OF 1/ALPHA+1/BEETA-2ALPHA BEETA​

Answers

Answered by varadad25
0

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{1}{\alpha}\:+\:\dfrac{1}{\beta}\:-\:2\:\alpha\:\beta\:=\:\dfrac{31}{4}}}}

Step-by-step-explanation:

The given quadratic polynomial is x² - x - 4.

Let the zeroes of the quadratic polynomial be \displaystyle{\sf\:\alpha\:\&\:\beta}

Now,

x² - x - 4

Compairing with ax² + bx + c, we get,

  • a = 1
  • b = - 1
  • c = - 4

We know that,

\displaystyle{\pink{\sf\:Sum\:of\:zeroes\:=\:-\:\dfrac{b}{a}}}

\displaystyle{\implies\sf\:\alpha\:+\:\beta\:=\:-\:\dfrac{(\:-\:1\:)}{1}}

\displaystyle{\implies\sf\:\alpha\:+\:\beta\:=\:-\:(\:-\:1\:)}

\displaystyle{\implies\boxed{\pink{\sf\:\alpha\:+\:\beta\:=\:1}}}

Now,

\displaystyle{\blue{\sf\:Product\:of\:zeroes\:=\:\dfrac{c}{a}}}

\displaystyle{\implies\sf\:\alpha\:.\:\beta\:=\:\dfrac{-\:4}{1}}

\displaystyle{\implies\boxed{\blue{\sf\:\alpha\:.\:\beta\:=\:-\:4}}}

We have to find the value of,

\displaystyle{\sf\:\dfrac{1}{\alpha}\:+\:\dfrac{1}{\beta}\:-\:2\:\alpha\:\beta}

\displaystyle{\implies\sf\:\dfrac{\alpha\:+\:\beta}{\alpha\:.\:\beta}\:-\:2\:\times\:\alpha\:.\:\beta}

\displaystyle{\implies\sf\:\dfrac{1}{-\:4}\:-\:2\:\times\:(\:-\:4\:)}

\displaystyle{\implies\sf\:-\:\dfrac{1}{4}\:+\:8}

\displaystyle{\implies\sf\:-\:\dfrac{1\:+\:8\:\times\:4}{4}}

\displaystyle{\implies\sf\:-\:\dfrac{1\:+\:32}{4}}

\displaystyle{\implies\sf\:\dfrac{31}{4}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\dfrac{1}{\alpha}\:+\:\dfrac{1}{\beta}\:-\:2\:\alpha\:\beta\:=\:\dfrac{31}{4}}}}}

Similar questions