Math, asked by cvrohit, 1 year ago

If alpha and beta are real and distinct roots of x^2+1=x/a satisfy mod alpha^2-beta^2>1/a then a belongs to

Answers

Answered by sujathanandyala7
1

Step-by-step explanation:

कोठा नंबर ऑफ वैल्यू सॉन्ग

gh

 \sin( \alpha  \times 7) 5201522 |5|

Answered by gargpriya0114
1

Answer:

a belongs to - \frac{1}{\sqrt{5} } and  \frac{1}{\sqrt{5} }.

Step-by-step explanation:

x^{2} +1=\frac{x}{a}\\ or , ax^{2} -x+a=0\\

Sum of the roots =\frac{1}{a}

multiplication of the roots =  1

(\alpha ^{2}-\beta ^{2}  ) > \frac{1}{a} \\or , (\alpha -\beta )(\alpha +\beta ) > \frac{1}{a}\\or , (\sqrt{\frac{1}{a^{2} }-4 } )(\frac{1}{a} ) > \frac{1}{a}\\or , \frac{1}{a^{2} }-4 > 1\\or ,  \frac{1}{a^{2} } > 5\\or , a^{2} < \frac{1}{5}\\or ,  -\frac{1}{\sqrt{5} } < a < \frac{1}{\sqrt{5} }

a belongs to - \frac{1}{\sqrt{5} } and  \frac{1}{\sqrt{5} }

#SPJ3

Similar questions