if tan A = m.tan B, prove sin (A-B)/sin(A+B)=m-1/m+1
Answers
Answered by
50
tanA = m.tanB
tanA/tanB = m
sinA.cosB/cosA.sinB = m
use, componendo or dividendo rule ,
(sinA.cosB + cosA.sinB)/(sinA.cosB-cosA.sinB) = (m+1)/(m-1)
[ use, sin(A - B) = sinA.cosB-cisA.sinB
sin(A + B) = sinA.cosB+ cosA.sinB ]
sin(A +B)/sin(A - B) = (m+1)/(m-1)
hence,
sin(A -B)/sin(A + B) = (m -1)/( m +1)
tanA/tanB = m
sinA.cosB/cosA.sinB = m
use, componendo or dividendo rule ,
(sinA.cosB + cosA.sinB)/(sinA.cosB-cosA.sinB) = (m+1)/(m-1)
[ use, sin(A - B) = sinA.cosB-cisA.sinB
sin(A + B) = sinA.cosB+ cosA.sinB ]
sin(A +B)/sin(A - B) = (m+1)/(m-1)
hence,
sin(A -B)/sin(A + B) = (m -1)/( m +1)
Answered by
13
tanA/tanB = m
=>
sinA.cosB/cosA.sinB = m
use, componendo or dividendo rule ,
(sinA.cosB + cosA.sinB)/(sinA.cosB-cosA.sinB) = (m+1)/(m-1)
[ use, sin(A - B) = sinA.cosB-cisA.sinB
sin(A + B) = sinA.cosB+ cosA.sinB ]
=>
sin(A +B)/sin(A - B) = (m+1)/(m-1)
hence,
sin(A -B)/sin(A + B) = (m -1)/( m +1)
Similar questions