Math, asked by aditya3214, 11 months ago

if alpha and beta are roots of quadratic equation 3x2+kx+8 and alpha/beta=2/3 then find the value of k​

Answers

Answered by Anonymous
150

ANSWER:-

Given:

If α and β are the roots of quadratic equation 3x² +kx+8 & α/β=2/3.

To find:

The value of k.

Explanation:

The given quadratic equation as compared with Ax² +Bx+C.

Therefore,

  • A= 3
  • B= k
  • C= 8

&

α and β are the roots of the above equation.

Given,

\frac{\alpha }{\beta } =\frac{2}{3}

\alpha =\frac{2\beta }{3}

Now,

Sum of the zeroes:

α+β= -\frac{coefficient\:\:of\:x}{coefficient\:\:of\:x^{2} }

Or

α+β= -\frac{b}{a}

α+β= -\frac{k}{3}

=\:\frac{2\beta }{3} +\beta =-\frac{k}{3} \\\\=\:\frac{2\beta +3\beta }{3} =-\frac{k}{3} \\\\=\:\frac{5\beta }{3} =-\frac{k}{3} \\\\=\:5\beta =-k\\\\=\:\beta = -\frac{k}{5}

Therefore,

Putting the value of β in α value:

α= =\:\frac{2\beta }{3} =\frac{2}{3} *(-\frac{k}{5} )\\\\=\:\alpha = -\frac{2k}{15}

Product of the zeroes:

αβ= \frac{constant\:term}{coefficient\:of\:x^{2} } =\frac{c}{a}

We have value ,

  • α= -2k/15
  • β= -k/5

So,

=\:\frac{-2k}{15} \:*\:(\frac{-k}{5} )=\frac{8}{3} \\\\=\:\frac{2k^{2} }{75} =\frac{8}{3} \\\\=\:6k^{2} =\:600\\\\=\:k^{2} =\frac{600}{6} \\\\=\:k^{2} =100\\\\=\:k=\sqrt{100} \\\\=\:k= 10

Thus,

The value of k is 10.

Similar questions