Math, asked by Abhiahek4714, 11 months ago

If alpha and beta are the roots of equation x^2-3x+1 ,then find 1/alpha^2+1/beta^2

Answers

Answered by chaitanya1212
0

Answer:

jcjxluxljxo xpudpucpfp dipu puxu

Answered by arunyadav1973
0

Step-by-step explanation:

 {x}^{2}  - 3x + 1 = 0 \\ compare \: equation \: with \: a {x}^{2}  + bx + c = 0 \\ a = 1 \:  \:  \: b =  - 3 \:  \:  \:  \: c = 1 \\  {b}^{2}  - 4ac =  {( - 3)}^{2}  - 4 \times 1 \times 1 \\  = 9 - 4 = 5 \\ x =  \frac{ - b +  -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\ x =  \frac{ - ( - 3) +   -  \sqrt{5} }{2}  \\ x =  \frac{3 +  -  \sqrt{5} }{2}  \\ x =  \frac{3 +  \sqrt{5} }{2}  \:  \:  \:  \:  \: or \:  \:  \:  \:  \: x =  \frac{3 -  \sqrt{5} }{2}  \\  \alpha  = \frac{3 + \sqrt{5} }{2} \:  \:  \:  \: or \:  \:  \:  \:  \beta = \frac{3 -  \sqrt{5} }{2} \\  \frac{1}{ { \alpha }^{2} }  +  \frac{1}{  { \beta }^{2} }  = \frac{1}{( {\frac{3 + \sqrt{5} }{2})}^{2} }    +  \frac{1}{ {(\frac{3 -  \sqrt{5} }{2})}^{2} }   \\  =  \frac{1}{ \frac{9 + 6 \sqrt{5} + 5 }{4} }  +  \frac{1}{ \frac{9 - 6 \sqrt{5}  + 5}{4} }  \\  =  \frac{4}{9 + 6 \sqrt{5}  + 5}  +  \frac{4}{9 - 6 \sqrt{5}  + 5}  \\

You can solve next steps

Similar questions