if alpha and beta are the roots of quadratic equation 3 x square + kx + 8 = 0 and alpha upon beta equal to upen 3then find the value of k
Answers
Correct question :-
If α and β are the roots of quadratic equation 3x² + kx + 8 = 0 and α/β = 2/3 then find the value of k .
Solution :-
3x² + kx + 8 = 0
Comparing with ax² + bx + c = 0 we get,
- a = 3
- b = k
- c = 8
α and β are the roots of the equation
Given : α/β = 2/3
⇒ α = (2/3) * β
Sum of roots = α + β = - b/a = - k/3
⇒ α + β = - k/3
Product of roots = αβ = c/a = 8/3
⇒ αβ = 8/3
Substituting α = (2/3) * β
⇒ (2/3) * β * β = 8/3
⇒ β² = 8/3 * 3/2
⇒ β² = 8/2
⇒ β² = 4
⇒ β = ± √4 = ± 2
⇒ β = ± 2
Substituting β = ± 2 in α = (2/3) * β
⇒ α = (2/3) * ( ± 2)
⇒ α = ± 4/3
Substituting α = ± 2 and β = ± 4/3 in α + β = - k/3
When α = 2, β = 4/3
⇒ α + β = - k/3
⇒ 2 + 4/3 = - k/3
⇒ (6 + 4)/3 = - k/3
⇒ 10 = - k
⇒ k = - 10
When α = - 2, β = - 4/3
⇒ α + β = - k/3
⇒ - 2 - 4/3 = - k/3
⇒ (-6 - 4)/3 = - k/3
⇒ - 10 = - k
⇒ k = 10
Therefore the value of k is 10 or - 10.
Step-by-step explanation:
ckn *; KB c KNOCK NSl I sky lh xhl luVpi lvdalucluulscquoc