Math, asked by Anonymous, 1 year ago

If \alpha and \beta are the roots of the equation 2x^{2} -5x+16=0, then the value of (\alpha ^2 /\beta )^1/3 +(\beta ^2/\alpha )^1/3 is:
OPTIONS ARE:
1/3
1/4
1/5
5/4

Answers

Answered by pratyushsharma697
1

Answer:

1/5

Step-by-step explanation:

please do the answer yourself.

bye bye......

Answered by smithasijotsl
0

Answer:

(\frac{\alpha ^{2} }{\beta } )^\frac{1}{3} + (\frac{\beta^{2} }{\alpha } )^\frac{1}{3} = \frac{5}{4}

Step-by-step explanation:

If \alpha and \beta are the roots of the ax^{2} +bx+ c=0, then we have,

Sum of roots =   \alpha  + \beta  = \frac{-b}{a} and

Product of roots = \alpha \beta = \frac{c}{a}

Given,

\alpha and \beta are the roots of the 2x^{2} -5x+16=0

Comparing the equation 2x^{2} -5x+16=0 with ax^{2} +bx+ c=0 we get,

a = 2

b = -5

c = 16

substituting the value of 'a','b' and 'c' we get

Sum of roots =   \alpha  + \beta  = \frac{5}{2} and

Product of roots = \alpha \beta = \frac{16}{2} = 8

Required to find,(\frac{\alpha ^{2} }{\beta } )^\frac{1}{3} + (\frac{\beta^{2} }{\alpha } )^\frac{1}{3}

Substitute \alpha = \frac{8}{\beta },    \beta  = \frac{8}{\alpha } we get

(\frac{\alpha ^{2} }{\beta } )^\frac{1}{3} + (\frac{\beta^{2} }{\alpha } )^\frac{1}{3}

= (\frac{\((\frac{8}{\beta })^{2} }{\beta } )^\frac{1}{3} + (\frac{\((\frac{8}{\\\alpha })^ {2} }{\alpha } )^\frac{1}{3}\\\\\\

= (\frac{64}{\beta ^2} *\frac{1}{\beta }  )^\frac{1}{3} + (\frac{64}{\\\alpha ^2} *\frac{1}{\\\alpha }  )^\frac{1}{3}

= (\frac{64}{\beta ^3})^\frac{1}{3}  + (\frac{64}{\\\alpha ^3})^\frac{1}{3}

= \frac{4}{\beta } + \frac{4}{\alpha }  \\

LCM = \alpha \beta

= \frac{4\alpha +4\beta }{\alpha \beta } = \frac{4(\alpha +\beta )}{\alpha \beta }

Substituting the value of \alpha +\beta and \alpha \beta

= \frac{4*\frac{5}{2} }{8} = \frac{10}{8}  = \frac{5}{4}

Then(\frac{\alpha ^{2} }{\beta } )^\frac{1}{3} + (\frac{\beta^{2} }{\alpha } )^\frac{1}{3} = \frac{5}{4}

Similar questions