Math, asked by lenin500, 10 months ago

if alpha and beta are the roots of the equation ax2+bx+c=0 the one of the quadratic equations are 1/alpha and 1/beta is​

Answers

Answered by ButterFliee
5

\huge\underline\mathrm{GivEn:-}

It is given that \alpha and \beta are the zeroes of quadratic polynomial ax² + bx + c

\huge\underline\mathrm{To\: find:-}

The value of \large{\sf {\frac{1}{alpha}}} + \large{\sf {\frac{1}{beta}}}

\huge\underline\mathrm{SoLutioN:-}

We know that,

  •  \alpha  +  \beta  =  \frac{ - b}{a}

and,

  •  \alpha  \times  \beta  =  \frac{c}{a}

According to Question :-

\implies \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha  +  \beta }{ \alpha  \beta }

We know the value of \alpha + \beta & \alpha\beta

\implies \frac{ \alpha  +  \beta }{ \alpha  \beta }  =  \frac{ \frac{ - b}{a} }{ \frac{c}{a} }

\implies \frac{ \alpha  +  \beta }{ \alpha  \beta }  =  \frac{ - b}{a}  \times  \frac{a}{c}

\implies \frac{ \alpha  +  \beta }{ \alpha  \beta } = \large{\sf {\frac{-b}{c}}}

\huge\underline\mathrm{ThAnKs...}

Answered by silentlover45
2

Answer:

\alpha   \: +  \beta  \div  \alpha  \beta  =  - b \div c

\large\underline\mathrm{Given:-}

  • if alpha and beta are the roots of the equation ax2+bx+c=0

\large\underline\mathrm{To \: find}

The  \: value  \: of  \: 1 \div  \alpha  + 1 \div  \beta

\large\underline\mathrm{Solution}

We know that,

 \alpha  +  \beta  =  - b \div a

and

 \alpha  \beta  = c \div a

The  \: value  \: of  \:  \alpha  +  \beta \:  and \:   \: \alpha  \beta .

 \alpha  +  \beta  \div  \alpha  \beta  =  (- b \div a) \div (c \div a)

 \alpha  +  \beta  \div  \alpha  \beta  =  - b \div c

Similar questions