if alpha and beta are the roots of the quadratic equation X square - 5 x + 6 is equal to zero find find Alpha square + beta square
Answers
given equation x2−2x+3=0
⇒x=2±√22−4⋅1⋅32=1±√2i
Let α=1+√2iandβ=1−√2i
Now let
γ=α3−3α2+5α−2
⇒γ=α3−3α2+3α−1+2α−1
⇒γ=(α−1)3+α−1+α
⇒γ=(√2i)3+√2i+1+√2i
⇒γ=−2√2i+√2i+1+√2i=1
And let
δ=β3−β2+β+5
⇒δ=β2(β−1)+β+5
⇒δ=(1−√2i)2(−√2i)+1−√2i+5
⇒δ=(−1−2√2i)(−√2i)+1−√2i+5
⇒δ=√2i−4+1−√2i+5=2
So the quadratic equation having roots γandδ is
x2−(γ+δ)x+γδ=0
⇒x2−(1+2)x+1⋅2=0
⇒x2−3x+2=0
Q.2 If one root of the equation ax2+bx+c=0 be the square of the other,
Prove that b3+a2c+ac2=3abc
Let one root be α then other root will be α2
So α2+α=−ba
and
α3=ca
⇒α3−1=ca−1
⇒(α−1)(α2+α+1)=ca−1=c−aa
⇒(α−1)(−ba+1)=c−aa
⇒(α−1)(a−ba)=c−aa
⇒(α−1)=c−aa−b
⇒α=c−aa−b+1=c−ba−b
Now α being one of the roots of the quadratic equation ax2+bx+c=0 we can write
aα2+bα+c=0
⇒a(c−ba−b)2+b(c−ba−b)+c=0
⇒a(c−b)2+b(c−b)(a−b)+c(a−b)2=0
⇒ac2−2abc+ab2+abc−ab2−b2c+b3+ca2−2abc+b2c=0
⇒b3+a2c+ac2=3abc
prove