Math, asked by prishakapoor259, 10 months ago

If alpha and beta are the roots of x^2+x+1=0, then find alpha^2+beta^2

Answers

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha^{2}+\beta^{2}=-1}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies  {x}^{2}  + x + 1 = 0 \\  \\  \tt:  \implies  \alpha  \: and \:  \beta  \: are \: the \: roots \\  \\ \red{\underline \bold{To \: Find :}}\\  \tt: \implies  \alpha^{2}  +  { \beta }^{2}  = ?

• According to given question :

 \tt:  \implies {x}^{2} + x + 1 = 0 \\  \\  \tt \circ \: a = 1 \\  \\  \tt \circ \: b = 1 \\  \\  \tt \circ \: c = 1 \\  \\   \tt: \implies sum \: of \: zeroes =  \frac{ - b}{a}  \\  \\  \tt:  \implies  \alpha  +  \beta  =  \frac{ - 1}{1}  \\  \\  \tt:  \implies  \alpha  +  \beta  =  - 1 \\  \\   \tt:  \implies product \: of \: zeroes =  \frac{c}{a}  \\  \\ \tt:  \implies  \alpha  \beta  =  \frac{1}{1}  \\  \\ \tt:  \implies  \alpha  \beta  = 1 \\  \\  \bold{for \: finding \: value} \\  \tt:  \implies  \alpha^{2}  +  { \beta }^{2}  \\  \\  \tt \circ \:  {x}^{2}  +  {y}^{2} =  {(x + y)}^{2}   - 2xy \\ \\  \tt:  \implies    {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\  \\  \tt:  \implies ( - 1)^{2}  -  2 \times 1 \\  \\ \tt:  \implies 1 - 2 \\  \\ \tt:  \implies  - 1 \\  \\   \green{\tt \therefore   { \alpha }^{2}  +  { \beta }^{2}  =  - 1}

Answered by Shubhendu8898
14

Answer:

-1

Step-by-step explanation:

Given that,

p(x) = x² + x + 1

This is a second degree polynomial in x. On comparing this polynomial with standard form of Polynomial of second degree,

ax² + bx + c,

We get,

a = 1

b = 1

c = 1

We know that,

Sun of Roots = -b/a

α + β = -1/1

α + β = -1

and,

Product of Roots = c/a

αβ = 1/1

αβ = 1

Now,

α² + β²

= α² + β² + 2αβ - 2αβ

= (α + β)² - 2αβ

= (-1)² - 2(1)

= 1 - 2

= -1

Similar questions