Math, asked by tanishbhutani1, 11 months ago

if alpha and beta are the roots of x^2-x-1=0 then the value of alpha square/beta+beta square/alpha​

Answers

Answered by ITzBrainlyGuy
3

Answer:

 \alpha  \: and \:  \beta  \: are \: the \: roots \: of  \\ the \: equation \\  {x}^{2}  - x - 1 = 0 \\ then \: the \: value \: of \:   \frac{ { \alpha }^{2} }{  \frac{ {( \beta  +  \beta )}^{2} }{ \alpha }    }  \\  =   \frac{ \alpha }{ {2 \beta }^{2} }

first we have to find the roots

 {x}^{2}  - x - 1 \\

here ,a=1, b=-1,c=-1

we know that

quadratic equation formula

 \frac{ -b  + or -  \sqrt{ {b}^{2}  - 4ac}    }{2a}  \\  =   \frac{ - ( - 1) + or -  \sqrt{ { (- 1)}^{2}  - 4(1)( - 1)} }{2(1)}  \\ =   \frac{1 + or -  \sqrt{1 + 4} }{2}  \\   \\  =  \frac{1 +  \sqrt{5} }{2} (or) \frac{1 -  \sqrt{5} }{2}

now,

 \alpha  =  \frac{1 +  \sqrt{5} }{2}  \\  \beta  =  \frac{1 -  \sqrt{5} }{2}  \\ then  \\ \:  \frac{ \alpha }{ {2 \beta }^{2} }  =  \frac{ \frac{1  +   \sqrt{5} }{2} }{ \frac{1 -  \sqrt{5} }{2} }  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \frac{1  +  \sqrt{5} }{1 -  \sqrt{5} }  \\

rationalize the denominator

  = \frac{1 +  \sqrt{5} }{1 -  \sqrt{5} } \times  \frac{1 +  \sqrt{5} }{1  +   \sqrt{5} }   \\  =  \frac{ {(1 +  \sqrt{5} )}^{2} }{ {(1)}^{2} -  {( \sqrt{5}) }^{2}  }  \\    = \frac{1 + 2 \sqrt{5}  +  {( \sqrt{5} )}^{2} }{1 - 5} \\   = \frac{1  + 2 \sqrt{5} + 5 }{ - 4}    \\   = \frac{6 + 2 \sqrt{5} }{ - 4} \\   =  \frac{2(3 +  \sqrt{5} )}{ - 4}  \\  =  \frac{ - 3 -  \sqrt{5} }{2}  \\

hope this helps you

Similar questions