Math, asked by guptaananya2005, 19 hours ago

If alpha and beta are the roots of x^2+x-1=0 then the value of limit n to Indy summation r = 1 to n (α^r+β^r) =​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha , \:  \beta  \: are \: the \: roots \: of \:  {x}^{2} + x - 1 = 0

So,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  +  \beta  =  - \dfrac{1}{1}  =  - 1

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  \beta  = \dfrac{ - 1}{1} =  - 1

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\displaystyle\sum_{r=1}^n( { \alpha }^{r} +  { \beta }^{r})

\rm \:  =\displaystyle\lim_{n \to  \infty }\bigg[( \alpha  +  \beta) + ( { \alpha }^{2}+{ \beta }^{2}) +  -  -  + ( { \alpha }^{n} +  { \beta }^{n}) \bigg]

\rm \:  =  \: ( \alpha  +  { \alpha }^{2} +  { \alpha }^{3} +  -  -  \infty ) + ( \beta  +  { \beta }^{2} +  { \beta }^{3} +  -  -  \infty )

Now, its an infinite GP series. So, using sum of infinite GP, we get

\rm \:  =  \: \dfrac{ \alpha }{1 -  \alpha }  + \dfrac{ \beta }{1 -  \beta }

\rm \:  =  \: \dfrac{ \alpha(1 -  \beta ) +  \beta (1 -  \alpha ) }{(1 -  \alpha)(1 -  \beta ) }

\rm \:  =  \: \dfrac{ \alpha  -  \alpha  \beta  +  \beta  -  \alpha  \beta }{1 -  \alpha  -  \beta  +  \alpha  \beta }

\rm \:  =  \: \dfrac{ \alpha +  \beta  - 2 \alpha  \beta }{1 -  (\alpha  +  \beta)  +  \alpha  \beta }

\rm \:  =  \: \dfrac{ - 1 - 2( - 1)}{1 + 1 - 1}

\rm \:  =  \: \dfrac{ - 1 + 2}{1}

\rm \:  =  \: 1

Hence,

\rm \implies\:\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\displaystyle\sum_{r=1}^n( { \alpha }^{r} +  { \beta }^{r}) = 1}}

Similar questions