Math, asked by janakknandwani610, 2 months ago

If alpha and beta are the roots of x2-2x+3 then find the value of alpha/beta2 + beta/alpha2

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\: \alpha , \beta  \: are \: roots \: of \:  {x}^{2} - 2x + 3}

We know,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  -  \: \dfrac{( - 2)}{1}  = 2

And

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{3}{1}  = 3

Now, Consider

\rm :\longmapsto\:\dfrac{ \alpha }{ { \beta }^{2} }  + \dfrac{ \beta }{ { \alpha }^{2} }

\rm \:  =  \:  \: \dfrac{ { \alpha }^{3}  +  { \beta }^{3} }{ { \alpha }^{2}  { \beta }^{2} }

\rm \:  =  \:  \: \dfrac{ {( \alpha +   \beta )}^{3}  - 3 \alpha  \beta ( \alpha +   \beta )}{ {( \alpha  \beta )}^{2} }

\rm \:  =  \:  \: \dfrac{ {(2)}^{3}  - 3 \times 3 \times 2}{ {(3)}^{2} }

\rm \:  =  \:  \: \dfrac{8 - 18}{9}

\rm \:  =  \:  \: -  \:  \dfrac{10}{9}

Additional Information

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta +   \beta  \gamma  +  \gamma  \alpha  =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Some useful Identities :-

\boxed{ \rm{  {x}^{2} +  {y}^{2} =  {(x + y)}^{2}  - 2xy}}

\boxed{ \rm{  {x}^{3} +  {y}^{3} =  {(x + y)}^{3}  - 3xy(x + y)}}

\boxed{ \rm{  {(x - y)}^{2} =  {(x + y)}^{2}  - 4xy}}

Similar questions