Math, asked by chiranjib5974, 10 months ago

if alpha and beta are the solutions of the equation a tan x+ b sec x=c, then show that tan(alpha+bita) =2ac/(a2-c2)​

Answers

Answered by Anonymous
161

Question :

If α and β are the solutions of the equation a tan x+ b sec x=c, then show that

 \tan( \alpha +  \beta  )  =  \frac{2ac}{a {}^{2} - c {}^{2}  }

Theory :

If α and β are the zeroes of quadratic polynomial \sf\:f(x)=ax{}^{2}+bx+c ,then

 \sf \alpha  +  \beta  =  \dfrac{ - cofficeint \:of \: x}{cofficient \: of \: x {}^{2} }

  \sf\alpha  \beta  =  \dfrac{constant \: term}{cofficeint \: of \: x {}^{2} }

Solution :

 \sf a \tan x + b \sec x = c

 \sf \implies b \sec x = c - a \tan x

On squaring both sides

 \sf \implies(b \sec x) {}^{2}  = (c -a  \tan x) {}^{2}

 \sf b {}^{2}  \sec {}^{2}  x = c {}^{2}  + a {}^{2}  \tan {}^{2} x - 2ac \tan x

we know that 1+ tan²x= sec²x

 \sf \implies b {}^{2} (1 +  \tan {}^{2} x) = c {}^{2}  + a {}^{2}  \tan {}^{2} x - 2ac \tan x

 \sf \implies(b {}^{2}  - a {}^{2} ) \tan {}^{2} x + 2ac \tan x + b {}^{2}   -  c {}^{2}  = 0

Since α and β are the roots of the equation,

 \sf \tan \alpha +  \tan \beta =  \dfrac{ - 2ac}{b {}^{2}  - a {}^{2} } ..(1)

and

 \sf \tan \alpha  \times   \tan \beta = \dfrac{b {}^{2} - c {}^{2}  }{b {}^{2} - a {}^{2}  } ...(2)

We know that

 \sf \tan(x + y) =   \dfrac{ \tan x +  \tan y}{1 -  \tan x \times  \tan y}

 \sf \implies \tan(  \alpha  +  \beta ) =  \dfrac{ \tan \alpha +  \tan \beta}{1 -  \tan \alpha \times  \tan \beta}

Now put the values of equations (1)&(2)

 \sf \implies \tan( \alpha +   \beta ) =  \dfrac{ \frac{ - 2ac}{b {}^{2} - a {}^{2}  } }{ 1 - \frac{b {}^{2}  - c {}^{2} }{b {}^{2} - a {}^{2}  }   }

 \sf \implies \tan( \alpha  +  \beta ) =  \dfrac{ - 2ac \times  \cancel{b {}^{2}  - a {}^{2} }}{ \cancel{b {}^{2} - a {}^{2} } \times (b {}^{2} - a {}^{2}  - b {}^{2} + c {}^{2} )  }

 \sf \implies \tan( \alpha + \beta) =  \dfrac{ - 2ac}{ - a {}^{2}  + c {}^{2} }

 \bf \implies \tan( \alpha   + \beta ) =  \dfrac{2ac}{a {}^{2} - c {}^{2}  }


kaushik05: Awesome
Answered by Anonymous
104

Question -

If \alpha \\ and \beta \\ are the solution of equation a tan x + b sec x = c equation 1st

Then show that →

 \tan ( \alpha + \beta) = \frac{2ac}{{a}^{2} - {c}^{2}} \\

Solution -

The quadratic equation given to us is

a tan x + b sec x = c

Now we will convert the equation in tan only .

→ b sec x = c - a tan x

Squaring both sides :-

→ ( b sec x )² = ( c - a tan x )²

Some required identities used over here are :-

→ ( a - b )² = a² + b² - 2ab .

→ sec²x = 1 + tan²x

Now using these identities.

→ b² ( 1 + tan²x ) = c² + a² tan²x - 2ac tan x

→ b² + b² tan²x = c² + a²tan²x - 2ac tan x

→ c² - b² + a² tan²x - b² tan²x - 2 ac tan x = 0

Taking tan²x common .

→ ( c² - b² ) + tan²x ( a² - b² ) - 2 ac tan x = 0

Writing in correct order.

→ tan ² x ( a² - b² ) - 2ac tan x + ( c² - b² ) = 0

equation 2nd .

As alpha and beta are the solution first equation then tan alpha and tan beta are the solution of equation 2nd .

 \alpha + \beta = \frac{- b}{a} \\

So here in 2nd equation .

 \tan (\alpha ) + \tan (\beta) = \frac{- coefficient\: of\: \tan x }{coefficient\: of \: {\tan}^{2}x} \\

→ tan alpha + tan beta = 2ac/ a² - b²

and  \tan (\alpha )\times \tan(\beta) = \frac{{c}^{2}-{b}^{2}}{{a}^{2}-{b}^{2}} \\

Hence, tan ( alpha + beta ) =  \frac{ \tan \alpha + \tan \beta}{1 - \tan \alpha \times \tan \beta} \\

tan ( alpha + beta ) =  \frac{\frac{2ac}{{a}^{2}-{b}^{2}}}{1 - \frac{{c}^{2}-{b}^{2}}{{a}^{2}-{b}^{2}}} \\

= ( 2ac / a² - b² )/ (a² - b² - c² + a² /a² - b²)

\frac{2ac}{{a}^{2}-{c}^{2} }\\

Hence proved


kaushik05: Nice
Similar questions