Math, asked by Shivanihani5417, 1 year ago

If alpha and beta are the zero of the polynomial t^2 - 5t +3 then find alpha^3peta^4+alpha^4beta^3

Answers

Answered by ALTAF11
4
Hey!


Given :- t² - 5t + 3

• Sum of Zeros =
 \frac{ - coefficient \: of \: x}{coefficient \: of \:  \:  {x}^{2} }


 \alpha  +  \beta  =  \frac{5}{1}


• Product of Zeros =
 \frac{ constant \:  \: term}{coeffic. \:  \:  \: of \:  {x}^{2} }


 \alpha  \beta   =  \frac{3}{1}


# To find :-

 { \alpha }^{3}  { \beta }^{4}  +  { \alpha }^{4}  { \beta }^{3}


 { \alpha }^{3}  { \beta }^{3}  ( \beta  +  \alpha )


 {( \alpha  \beta )}^{3}   ( \alpha  +  \beta )


( {3)}^{3}  \times  5

= 135


Hence , value is 135 !!
Similar questions