if alpha and beta are the zeroes of 2x^2 - 3x + 7 find alpha square plus beta square
Answers
EXPLANATION.
α, β are the zeroes of the polynomial.
⇒ 2x² - 3x + 7.
As we know that,
Sum of the zeroes of the quadratic equation.
⇒ α + β = -b/a.
⇒ α + β = -(-3)/2 = 3/2.
Products of the zeroes of the quadratic equation.
⇒ αβ = c/a.
⇒ αβ = 7/2.
To find :
⇒ α² + β².
As we know that,
Formula of :
⇒ (x² + y²) = (x + y)² - 2xy.
Using this formula in the equation, we get.
⇒ α² + β² = (α + β)² - 2αβ.
Put the values in the equation, we get.
⇒ α² + β² = (3/2)² - 2(7/2).
⇒ α² + β² = 9/4 - 7.
⇒ α² + β² = (9 - 28)/7.
⇒ α² + β² = - 19/7.
MORE INFORMATION.
Conjugate roots.
(1) = If D < 0.
One roots = α + iβ.
Other roots = α - iβ.
(2) = If D > 0.
One roots = α + √β.
Other roots = α - √β.
Step-by-step explanation:
2x² - 3x + 7
.
It is in the standard form of quadratic equation (ax² + bx + c), here
a = 2
b = -3
c = 7
.
Sum of zeroes,
product of zeroes,
Now,
Hence alpha² + beta² = -19/4.
hope it helps.