Math, asked by rifataamana, 10 months ago

if alpha and beta are the zeroes of a quadratic polynomial xsquare+5x-5 , then
a) alpha+beta = alphabeta
b) alpha-beta = alphabeta
c) alpha+beta > alphabeta
d) alpha+beta < alphabeta

Answers

Answered by Cynefin
16

━━━━━━━━━━━━━━━━━━━━

Required Answer:

♦️ GiveN:

  • \large{\rm{\alpha}} and \large{\rm{\beta}} are the zeroes of the polynomial \large{\rm{{x}^{2}+5x-5}}

♦️ To FinD:

  • Relation between the \large{\rm{\alpha}} + \large{\rm{\beta}} and \large{\rm{\alpha}} \large{\rm{\beta}}

━━━━━━━━━━━━━━━━━━━━

How to Solve?

Before solving this question, we need to know the relationship of zeroes and coefficients of the quadratic polynomial. The relations are:

 \large{ \boxed{ \rm{ \purple{Sum \: of \: zeroes \:  =   -  \normalsize{\frac{Coefficient \: of \: x}{Coefficient \: of \:  {x}^{2} } }}}}}

And,

\large{ \boxed{ \rm{ \purple{Product \: of \: zeroes =  \normalsize{ \frac{Constant \: term}{Coefficient \: of \:  {x}^{2} }}}}}}

I think, we should always remember this relation. I know that people often use, sum of zeroes = -b/a and product of zeroes = c/a when the quadratic polynomial ax^2+bx+c, but this might cause confusion when the coefficients are changed.

So, let's solve this question,

━━━━━━━━━━━━━━━━━━━━

Solution:

Given, quadratic polynomial = \large{\rm{{x}^{2}+5x-5}} and the zeroes of the quadratic polynomial are \large{\rm{\alpha}} and \large{\rm{\beta}}.

By using relation,

\large{ \rm{Sum \: of \: zeroes...}} \\  \large{ \rm{ \longrightarrow \:  \alpha  +  \beta  =   - \frac{5}{1}}} \\  \\  \large{ \rm{ \longrightarrow \:  \alpha  +  \beta  =   \boxed{ \rm{ \green{- 5}}}}} \\  \\  \large{ \rm{Product \: of \: zeroes....}} \\   \large{ \rm{ \longrightarrow  \:  \alpha  \beta  =  \frac{ - 5}{1}}} \\  \\  \large{ \rm{ \longrightarrow \:  \alpha  \beta  =   \boxed{ \rm{ \green{- 5}}}}}

So, from here we can conclude that,

\large{ \rm{ \longrightarrow \:  \alpha  +  \beta  =  \alpha  \beta }} \\  \\  \rm{\underline{ \dag \: { \pink{As \: both \: are \: equal \: to - 5}}}}

✏Thus, Option A is correct.

━━━━━━━━━━━━━━━━━━━━


vikram991: Mind-blowing Answer :clap:
Answered by TheSentinel
73

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{If \ \alpha \ and \ \beta \ are \ the \ zeroes \ of \ a}

\rm{quadratic \ polynomial \ x^2+5x-5, \ then}

a) \:  \:  \:   \alpha  +  \beta  =  \alpha  \beta  \\

b) \:  \:  \alpha  -  \beta  \alpha  \beta  \\

c) \:  \:  \alpha  +  \beta  &gt;  \alpha  \beta  \\

d) \:  \:  \alpha  +  \beta   &lt;  \alpha  \beta  \\

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm\orange{The \ correct \ option \ is :}

\rm\orange{a) \:  \:  \:   \alpha  +  \beta  =  \alpha  \beta  } \\ \\

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \ given \ quadratic \ polynomial \ is }

 {x}^{2}  + 5x - 5

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{correct \ option}

_________________________________________

\green{\underline{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}}} \\ \\

\rm{Given, \ quadratic \ polynomial}

\implies\rm{{x}^{2}+5x-5}

\rm{the \  zeroes \  of \  the \  quadratic \  polynomial }

\implies\rm{\alpha \ and \ \beta}.

\rm{Now \ using}

\rm{Sum \: of \: zeroes...} \\

\rm\implies{ \alpha  +  \beta  =   - \frac{5}{1}} \\  \\

\rm\therefore{\boxed{\orange{  \alpha  +   \beta \ = \ -5}}} \\ \\

\rm{Product \: of \: zeroes....} \\  \rm\therefore{\alpha  \beta  =  \frac{ - 5}{1}} \\

\rm\therefore{\boxed{\orange{  \alpha  \beta \ = \ -5}}} \\ \\

\rm{Hence \ we \ get ,}

\bf\implies{\blue{\boxed{\red{\alpha  +  \beta  =  \alpha  \beta}}}}  \\

\large\tt\purple{Option \ a) \ is \  correct}

Similar questions