Math, asked by sravani2003, 1 year ago

if alpha and beta are the zeroes of f(x)=x^2+px +q form a polynomial whose zeroes are( alpha+beta)^2 and (alpha -beta)^2

Attachments:

Answers

Answered by hukam0685
10

 {x}^{2}  + px + q \\  \alpha   + \beta  =  - p  \:  \:  \:  \:  \: eq1\\  \alpha  \beta  = q \\ now \: find \: the \: value \: of \:  {( \alpha  +  \beta) }^{2}  \:  \:  \:  \:  \: from \: eq1 \\ {( \alpha  +  \beta) }^{2} =  {p}^{2}  \\ {( \alpha   -   \beta) }^{2} = ( { \alpha  +  \beta )}^{2}  - 4 \alpha  \beta  \\  =  {p}^{2}  - 4q \\ now \: sum \: of \: new \: zeros \: i.e \\  { \alpha  +  \beta }^{2}  + ( { \alpha   - \beta) }^{2}  =  {p }^{2}  +  {p}^{2}  - 4q \\  = 2 {p}^{2}  - 4q  =  \frac{ - b}{a} \\product \: of \: zeros \:  {( \alpha  +  \beta )}^{2}  ( { \alpha  -  \beta )}^{2}  \\  =  {p}^{2}(  {p}^{2}  - 4q) \\  =  \frac{c}{a}  \\ polynomial \: is \\  {x}^{2}  +  \frac{b}{a} x +  \frac{c}{a}  \\  {x}^{2}  - (2 {p}^{2}  - 4q)x +  {p}^{2} ( {p}^{2}  - 4q)
Similar questions