Math, asked by aditikatyal4, 1 year ago

if alpha and beta are the zeroes of polynomial 3xsquare-5x-2 then find the value of alpha square/beta +beta square/alpha

Answers

Answered by aliya346
1

I hope it's helpful

............

Attachments:
Answered by Anonymous
4

HEYA \:  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \:  \\  \\ f(x) = 3x {}^{2}  - 5x - 2 \\  \alpha   \:  \:  \:  and \:  \:  \:  \beta  \:  \: are \: the \: zeros \: of \:  \: f(x) \\  \\  \alpha  +  \beta  =  \frac{5}{3}  \:  \:  \: and \:  \:  \:  \alpha  \beta  =  \frac{ - 2}{3}  \\  \\   \frac{  \alpha  {}^{2}  }{ \beta }  +  \frac{ \beta  {}^{2} }{ \alpha }  =   \frac{ \alpha  {}^{3}  +  \beta  {}^{3} }{  \alpha  \beta  }  \\  \\  \\  \frac{ \alpha  {}^{3}  +  \beta  {}^{3} }{ \alpha  \beta }  =  \frac{( \alpha  +  \beta ) {}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta )}{ \alpha  \beta }  \\  \\  \\  \frac{ \alpha  {}^{3}  +  \beta  {}^{3} }{ \alpha  \beta }  =  \frac{( \frac{5}{3} ) {}^{3}  - 3 (\frac{ - 2}{3} )( \frac{5}{3} )}{ (\frac{ - 2}{3}) }  \\  \\  \\    \frac{ \alpha  {}^{3} +  \beta  {}^{3}  }{ \alpha  \beta }  =  \frac{ \frac{125}{27}  +  \frac{10}{3} }{ \frac{ - 2}{3} }  \\  \\   \\  \frac{ \alpha  {}^{3}  +  \beta  {}^{3} } { \alpha  \beta }  =  \frac{ \frac{125}{27}  +  \frac{90}{27} }{ \frac{ - 2}{3} }  \\  \\  \\  \frac{ \alpha  {}^{3}  +  \beta  {}^{3} }{ \alpha  \beta }  =  \frac{ \frac{215}{27} }{  \frac{ - 2}{3} }  \\  \\  \\   \frac{ \alpha  {}^{3}  +  \beta  {}^{3} }{ \alpha  \beta }  =   \frac{215 \times 3}{27 \times  - 2}  \\  \\  \\  \frac{ \alpha  {}^{3} +  \beta  {}^{3}  }{ \alpha  \beta }  =  \frac{215}{ - 18}

Similar questions